Math 742 Complex Variables Exam 2

The following problems were featured on qualifying exams in complex analysis at the graduate center. Submit your work on any 5.

1. Find the value of

$$\int_C \frac{dz}{1+z^2}$$

(a) When C is the circumference |z - i| = 1

(b) When C is the circumference |z| = 2

2. Suppose $f: \mathbb{D} \to \mathbb{C}$ is holomorphic and $z_0 \in \mathbb{D}$. Show that f is not injective on a neighborhood of z_0 if and only if $f'(z_0) = 0$.

3. Find the number of zeros of $f(z) = z^6 - 5z^4 + 3z^2 - 1$ in $|z| \le 1$.

4. Show that the equation

$$ze^{a-z} = 1, a > 1$$

has precisely one root in the disc $|z| \leq 1$. Show this solution must be positive.

5. Find the number of zeros of $f(z) = \frac{1}{3}e^z - z$ in $|z| \le 1$.

6. Let f be holomorphic in a region G and for $w \in \mathbb{C}$, let $\mu(w)$ be the number of zeros in G of f(z) - w, counted according to multiplicity. Suppose $\mu(w_0) \ge n$, where $w_0 \in \mathbb{C}$ and n is a positive integer. Show there exists a neighborhood W of w_0 such that every $w \in W - \{w_0\}$ has at least n distinct pre-images under f in G.

7. Let *G* be a region and suppose that $f: \mathbb{C} \to \mathbb{C}$ is holomorphic and |f| obtains its minimum value at an interior point $a \in G$. Show that either f(a) = 0 or f is a constant function.

8. Prove there is no holomorphic $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ such that

$$|f(z)| \ge \frac{1}{\sqrt{|z|}}$$

for all $z \neq 0$.

9. Suppose f is holomorphic in an open set containing the closed unit disk, except for a simple pole at z_0 on the unit circle. Show that if

$$\sum_{n=0}^{\infty} a_n z^n$$

denotes the power series expansion of f in the open unit disk, then

$$\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = z_0$$

10. Give an example of a closed rectifiable curve γ in \mathbb{C} such that for any integer k there is a point $a \notin \gamma$ with winding number $\eta(\gamma; a) = k$.

11. Suppose f and g are holomorphic in a region Ω containing the closure of the disc $\mathbb{D}_R = \{z: |z| < R\}$ (i.e. $\overline{\mathbb{D}}_R \in \Omega$) and |f(z)| = |g(z)| on $C_R = \partial \mathbb{D}_R$. Show that if neither f nor g vanishes in \mathbb{D}_R , there is a constant λ , with $|\lambda| = 1$, such that $f = \lambda g$.